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Abstract 

Energies and lifetimes (with respect to tunneling) for metastable 

fh [() 1213 
states o t e Henon-Heiles potential energy surface V x,y ~ 2 x - 3 x + 

~ y
2 + xy

2
] have been computed quantum mechanically (via the method of 

complex scaling). This is a potential surface for which the classical 

dynamics is known to change from quasiperiodic at low energies to ergodic-

like at higher energies. The rate constants (i.e. inverse lifetimes) for 

unimolecular decay as a function of energy, however, are seen to be well 

described by standard statistical theory (microcanomical transition state 

theory, RRKM plus tunneling) over the entire energy region, This is thus 

another example indicating that mode-specificity in unimolecular reaction 

dynamics is not determined solely by the 4uasiperiodic/ergodic character 

of the intramolecular mechanics. 





I. Introduction. 

There is considerable interest nowadays in the question of mode­

specificity in chemical reaction dynamics.
1 

For .a unimolecular reaction, 

for example, the question is whether the rate of reaction depends on the 

specific mode of the molecule which is excited or only on the total 

energy of excitation. 

Pursuant to this question there have been a number theoretical studies 

of intramolecular dynamics of model systems. One particular feature of 

such studies which has received much attention is the existence of 

classical motion that is quasiperiodic at low energies but which becomes 

ergodic-like (or stochastic, chaotic) at higher energies. 2 This transition 

of the intramolecular motion from quasiperiodic at low energy to ergodic­

like at high energies is related to the KAM theorem3 and related topic 

which are currently receiving much attention in the mathematics community. 4 

Some theoretical studies have also been concerned with whether this 

quasiperiodic/ergodic behavior in the classical mechanics of intramolecular 

motion has a direct manifestation in a quantum mechanical description of 

5 
the corresponding system. A variety of quantum mechanical features have 

been considered--the sensitivity of individual energy levels to small 

perturbations of the potential function, 5a the "localized" or "extended" 

distribution of coefficients of basis functions used to expand the wave 

f · Sb h d 1 f h f . Sc d h unctlon, t e no a patterns o t e wave unct1ons, etc.--an t ey all 

do indeed show quantum mechanical features that correlate qualitatively 

with the quasiperiodic/ergodic aspects of the classical mechanics. 



However, while these quantum mechanical studies have been of interest, 

do not bear direct on the question of hci in the reaction 

6 In a recent paper the present authors thus undertook a 

series of calculations designed to investigate the extent to which mode-

specificity in unimolecular rate constants correlates with the 

quas c/ergodic character of the intramolecular (classical) 

of the system. Specifically, for a system of two coupled 

oscillators (i .. , a collinear triatomic molecule in its center of 

mass), one of which could dissociate by tunneling through a barrier, 

quantum mechanical calculations for the energies and lifetimes of all 

metastable (or quasibound) states were made. Mode-specific or 

statistical behavior was then interpreted by plotting the unimolecular 

decay rates of all such states versus their energy to see if the rates 

were indeed a smooth function only of their energy. The expectation 

was that quasiperiodic classical motion would lead to mode-specific 

behavior of the rate constants and that ergodic-like classical motion 

would correlate with statistical behavior of the rates. 

Quite surprisingly, however, we found very little correlation 

between the quasiperiodic/ergodic motion of the classical mechanics 

and mode specific/statistical behavior of the unimolecular rate 

constants. For some potential surfaces for which the classical motion 

was quasiperiodic the rate constants showed strong mode-specificity, and 

for others they did not. 

To pursue further the question of how classical quasi-periodic/ 

ergodic behavior is related to mode-specificity in unimolecular rate 

constants, the present paper reports the results of calculations similar 



to our earlier ones for the Henon-Heiles
7 

potential.surface. The Henan-

Heiles model is a system of two coupled oscillators, and its classical 

quasiperiodic/ergodic behavior is perhaps the most extensively studied 

3 
of all such model systems: .At low energies the classical motion is 

quasiperiodic, but at higher energies it becomes ergodic~like. It is 

thus an excellent example to see if the mode-specific character of the 

unimolecular rate constants shows any similar transitional behavior 

as a function of energy. 

Section II defines the Henon~Heiles model and summarizes the 

computational method. The results are discussed in Section III, and 

it is seen that the unimolecular decay rates are described quite well 

by a simple statistical model, microcanonical transition state theory 

(i.e., RRKM plus tunneling), over the entire range of energies. For this 

system, therefore~ the quasiperiodic/ergodic behavior of the classical 

dynamics does not have a direct manifestation in the mode-specific char-

acter of the individual rate constants. Section IV considers a modified 

Henon-Heiles-like potential that does show significant mode-specificity, 

and our conclusions are summarized in Section V. 



The quantum mechanical version of the Henon-Heiles system is that 

of two coupled oscillators (e.g., a collinear triatomic molecule in its 

center of mass) with the following quantum mechanical Hamiltonian, 

H 
h2 

2m 

1 3 2 
+ A.(~ 3 x + xy ) 

This can be transformed to standard form by introducing the reduced 

quantum of action h, 

h = 

and measuring energy in unit s, 

hA. 2 

3 5 
m w 

3 6 
mw s = 7 

In these units H becomes 

H 
~2 "'2 "'2 1 2 2 
h (0 a) ·c ) 2+-2 +2 x+y 

dX dy 

1 3 2 
3 

x + xy 

and in polar coordinates (r,e) the potential energy has a form that 

more clearly depicts its C symmetry, 
3v 

V(r,e) 
1 2 
2 r 

1 
r 3 cos(38) 

3 

(2.1) 

(2, 2a) 

(2.2b) 

( 2' 3) 

(2 .. 4) 

This potential has three equivalent saddle points at positions (r,8) = 

2TI 2 TI 
(1,0), (1,~), (1, -~-),and the value of the potential at the saddle 



points is V = 1/6 ~ 0.16 7. Henceforth we will denote h simply as 
sp 

h and allow it to be a variable parameter which measures the "quantumness" 

of the system. 

As noted in the Introduction, the classical version of the Henon-Heiles 

model has been studied extensively; 3 for energies below a critical value 

E ~ 0.11 all classical trajectories are quasiperiodic, but above this 
c 

value an increasingly large fraction of initial conditions in phase space 

leads to ergodic-like trajectories. Classically, the system cannot dissociate, 

of course, for any energy below V 
sp 

Quantum mechanically, however, the system has no bound states, only 

metastable states that decay by tunneling through the barriers. Using the 

8 
complex scaling method, we have calculated the complex 

eigenvalues of the system, i.e., the Siegert eigenvalues, 9 which give the 

2 energy (real part of the eigenvalue) and unimolecular decay rate (- h x 

imaginary part of the eigenvalue) of the metastable states. 

The c
3
v symmetry of the Henon-Heiles potential gives rise to 

the states of symmetry A
1

, A2 , and E. Using a basis set in polar 

coordinates, 

¢ (r,e) 
n,m 

2 
n -onr /2 im8 r e e (2.5) 

these three types of states correspond to the following grouping of the 

basis functions: 

A
1

: cos (rn8) m 0,3,6,9, .... m ;; n (2.6a) 

m = 3,6,9, ... , m :S n (2.6b) 



E: 
im8 

e m = [ .•• ,-5,-2,1,4,7, ... ]; lml S n 
... ,-4,-1,2,5,8, .. . 

(2.6c) 

where the two groups of m values for the E states give rise to the double 

of these states. 

With these special features due to symmetry, the method of calculation 

is essentially the same as that used earlier.
6 

In polar coordinates 

ia 
(r,8) the radial coordinate is scaled as r + re and 8 remains real, 

Le., the Hamiltonian H(a), 

H(a) 

2ia 1 2 3ia cl 3 + e c2 r ) - e 
3 

r ) cos(38) (2. 7) 

is diagonalized in the basis set of Eq. (2.5) and the complex eigenvalues 

thus obtained. 

The value of h can be chosen to make the system more (larger h) 

or less (smaller h) quantum-like, and to speed-up or slow-down, 

respectively, the tunneling rates. Since the harmonic approximation to 

the number of quantum states less than or equal to energy E is 

N (E) 

the value of h is related to Nb 

bound states, by 

:::: _;!: (E/h) 2 (2. 8) 
2 

- N(V ) NC
6
l), the number of classically 

sp 

1 N ::e~--

b 72 h 
(2. 9) 



A value h ~ 0.04 thus produces about 9 classical bound states, i.e., 

metastable states with energy < V ; a value h = 0,02 leads to~ 35 
~ sp 

classically bound states, Since smaller h means more states, the 

calculation of which requires larger basis sets, there is a practical 

limit to how small we are able to choose h. For the present calculations 

this is about h = 0.02, and for this smallest value we did not calculate 

the E-type complex eigenavlues since this symmetry required about twice 

the size of basis set of that for the A
1 

and A2 states. 



III. Results and Discussion. 

1-~3 show the unimolecular decay rates versus energy for 

values h O.Qt',, 0,03, and 0.02, respectively. Decreasing the value of 

h makes the system more c:lassic.al~like and is thus the interesting limit 

to explore to see if features related to the classical quasiperiodic/ 

behavior appear in the quantum rate constants. 

Several observations are apparent from Figures 1-3. 

(1) The A
2 

states decay more slowly than the A
1 

and 

E states, for a energy. This is readily understandable, however, 

realizing that A
2 

states have a nodal line from the origin through 

each saddle point; c..f. the factor sin(m8), m = 3,6, 
"" "9 in the wave-

function of A2 states. Eq.(2.6). In the language of transition state theory (see 

the Appendix), for example, this means that the vibrational states of 

the "activated complex", i.e., the local vibrational modes at the saddle 

points of the potential energy surface, must be odd. Thus in the tunneling 

region where only the lowest state of the activated complex contributes, 

transition state theory implies that 

kA (E) ~ (frequency factor) x P(E -% hw*) 
1 

3 * kA (E) ~ (frequency factor) x P(E -} hw ) 
2 

where P is a one-,dimensional tunneling probability; this implies that 

:j: 
where w is the vibrational frequency at the saddle point. For the 

(3,la) 

(3.lb) 

( 3 0 2) 



present potential surface, 

and Figures 1-3 do indeed show that the rate constants for A
1 

and A
2 

* states are displaced in energy by approximately hw = /3-h, 

(2) Apart from this symmetry-induced mode specificity, the rate 

constants show essentially no mode-specificity; i.e,, within each 

symmetry class the rate constants appear to be a smooth function only 

of the total energy. There is certainly no hint of any transitional 

behavior in the vicinity of the critical energy E ~ 0.11. The most 
c 

mode-specific features are in the E-states of Figure 2 and become more 

significant with increasing energy, 

To test the statistical character of the rate constants more 

quantitatively, we computed the rate via microcanonical transition state 

theory, i.e,, the simple "RRKM plus tunneling11 model
10 

that has been used 

recently for several molecular systems of physical interest (cH20 +CO+ H2 , 11 

HNC + HCN, 
12 

H{=C: + HCECH13). The Appendix describes the specifics of this 

calculation. The solid curves in Figures 1-3 show the rate obtained in 

this way, and one sees that the decay rates of the A
1 

and E states are 

reasonably well described by this simple statistical model, The fact 

that the A2 states decay more slowly is understood from the discussion above. 

and could be described by the statistical model by excluding the even 

vibrational states, n = 0,2, ,,,, from the activated complex (i.e., the 

sum in Eq, (A,l) of the Appendix). 

There is one final issue that could possibly cloud any correlation 

that might exist between classical quasiperiodic/ergodic behavior and 



-10-

mode~specificity in the rate constants we have calculated, namely the 

ility that we have not allowed h to become sufficiently small for 

constants. In order to extrapolate better to h + 0 we thus take 

co zance of the form the rate constant has within the statistical 

model described in the Appendix, namely 

k(E) - (frequency factor) x (tunneling probability) (3' 3) 

The factor has a classical limit independent of h, and the 

probability has the limiting form 

tunneling probability ~ exp(-28(E)/h) (3.4) 

where 8(E) is the classical action integral given for the present example 

by Eq. (A. 4) and (A. 6) of the Appendix. This implies that the quantity 

h log k(E) should have a classical limit, 

or 

Hm h R.n k(E) 
h+O 

-28(E) 

-28(E) log10e ~ - 0.878(E) 

Figures 4 and 5 show the quantity h log k(E) for h 

0.04, for the A
1 

and A
2 

states. Also shown is the 

(3. 5) 

'~RRKM plus tunneling" approximation to the h + 0 limit of this quantity, 

Eq. (3.5), and it appears that (1) the quantum rate constants are 

approaching the h + 0 limit in a smooth manner with no evidence of any 

new classical structure emerging, (2) the simple RRKM plus tunneling 



-11~ 

model is a reasonably good approximation to the h = 0 limit of the 

quantum rate constants, and (3) both the A
1 

and A2 states converge to 

the same n + 0 limit (as is implied by the approximate relation in 

Eq, (3.2)), 

The unavoidable conclusion, therefore, is that the Henon-Heiles 

system shows little mode-specificity in its unimolecular rate constants 

(other than that imposed by symmetry) and thus that in this case the 

quasiperiodic/ergodic character of the intramolecular classical mechanics 

does not determine the degree of mode-specificity in the reaction dynamics. 



It occured to us that the lack of mode-specificity for the Henan-

Heiles potential surface might be related to the fact that there are 

three exit valleys, i.e., dissociation channels. One might thus reason 

that even if the intramolectllar mechanics is quasiperiodic, i.e., quasi-

separable, there is no mode (or direction in the x-y-plane) in which the 

energy can be trapped that does not project onto one of the dissociative 

reaction coordinates. 

To test this idea we have carried out similar quanttoo mechanical 

calculations to determine the energies and lifetimes of the metastable 

states of the one-barrier Henon-Heiles-like potential, 

The 

v 
sp 

saddle point 

V(r,G) 

1 2 
2 

X 

occurs at 

1 
2 

r 

1 3 
3 

X 

(r,8) 

2 1 3 
cos8 - r 

3 

1 2 1 2 
+ 2 y -- xy 

3 

(1}0)' and the barrier 

( 4. l) 

height is still 

The states divide into tw·o symmetry classes, even and odd with res-

pect to reflection about the x-axis. Figure 6 shows the unimolecular 

rate constants as a function of their energy for h= 0.03. The results 

are quite different from the 3-barrier case of Section III, namely there 

is substantial mode-specificity even within each symmetry class. 

We next generated classical Poincare surfaces of section
3 

to deter-

mine the classical quasiperiodic/ergodic features as a function of energy 

and found that this system is totally quasiperiodic for all energies up 

up to the top of the barrier. 



This potential surface, therefore. does show the expected correlation, 

i.e., the classical mechanics is quasiperiodic for all energies (below the 

top of the barrier) and the quantum mechanical unimolecular decay rates are 

highly mode-specific. Since this potential surface does not have a transition 

from quasiperiodic to ergodic~like classical dynamics as a function of 

energy, however, this example does not provide a stringent test of these 

notions. 



The Henon~,Heiles potential has been a bench~mark for the study of 

quasiperiodic/ergodic behavior of classical mechanics and is thus an 

important example to consider with regard to mode~specifici in the 

quantum mechanical unimolecular decay rates. The observation is that 

this system shows little mode-specificity, and the little that does exist 

seems in no way related to the quasiperiodic/ergodic transition in the 

classical mechanics. 

The conclusions from the study of this model are essentially the 

same as from our earlier study, namely that there seems to be no manditory 

correlation between the quasiperiodic/ergodic character of the classical 

mechanics of the system and the mode-specificity of its unimolecular rate 

constants. Such a correlation may exist (cf. the example in Section IV), 

but unlike our initial intuition it appears that it is not necessary. 

Furthermore, we do not think that this lack of correlation :is due to 

a quantum-classical dichotomy, i.e., to result because the quasiperiodic/ 

ergodic notion is one of classical mechanics while the tunneling rate con~ 

stants must be determined urn mechanically. It was noted in the Intro-
J.C.-~--

duction that some quantum mechanical features~-e.g., nodal patterns of wave­

functions, etc.,--do show rather direct correlation v.rith quasiperiodic/ 

ergodic character of thP classical mechanics. 

1Alhat features, of a system, then, are relevant to determining mode­

specificity in its reaction dynamics? The nature of the intramolecular 

dynamics, quasiperiodic or ergodic, is certainly one relevant consideration, 

but there are at least two others that come to mind. One is the rate of 

randomization in phase space, compared to the rate of the chemical process 



of interest. The statement that the intramolecular dynamics is ergodic 

(on the basis of Poincare surfaces of section, for example) refers to an 

indefinitely long time period, but the molecular system does not have an 

infinite amount of time to decide whether or not it is going to behave 

ergodically. If the rate of the chemical process is faster than the rate 

of randomization, then one would observe mode-specific chemistry even 

though the intramolecular dynamics might, given sufficient time, he ergodic-

like. 

Another relevant factor, which is illustrated by the example in the 

paper, is the couEling of the intramolecular motion to the reaction product 

channels; mode-specific reaction dynamics requires not only mode-specific 

(i.e. quasiperiodic) intramolecular dynamics but also mode-specific coupling 

to the reaction products. Thus even though the Henon-Heiles system has 

mode-specific (i.e. quasiperiodic) intramolecular dynamics at energies be-

low E , the three exit valleys effectively provide statistical-like coupling c 

to pn~ducts since there is no mode (i.e., direction in the xy plane) that 

does not project significantly onto a reaction coordinate for at least one 

of the exit valleys. For the one-barrier potential of Section IV, however, 

certain modes (eg. motion in the y-direction) avoids the saddle point leading 

to dissociation, 

Further theoretical studies, some on more realistic models of chemical 

systems, are planned to elucidate more clearly the features related to mode 

specific chemistry. 
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~endix: RRKM Plus Tunneling Rate Constant 

The microcanonical transition state theory rate expression is 

k (E) 
n=O 

l * P(E~(n + 2)hw ) (A.l) 

where the factor of 3 is due to the three equivalent saddle points of the 

potential surface. The density of states p(E) for the present case is 

p (E) E/t1 2 

and the one~dimensional tunneling probability P is given semiclassically 

by 

P(E ) 
t 

V(x) 
1 2 

= 2 X 
1 3 
3 X 

The barrier penetration integral 8 is well=approximated by 

(A. 3) 

(A.4) 

(A. 5) 

-1 
The statistical frequency factor [2Tihp] can be used to define 

an effective mechanical frequency ws, 

1 
2Tihp (E) 

w 
s 

2TI 
(A. 7) 



and >vi th p 

18~ 

Eq. (A.2), this effective mechanical 

w 
s 

h/E 

:i.s 

(A. 8) 

At the lowest eigenvalue E -- h, i.e,, the zero point energy of the two 

oscillators, one thus has 

w "' 1 
s 

(A.9) 

which is the actual mechanical frequency of the oscillator, The classical 

ity of states of Eq. (A.2) thus gives essentially the correct frequency 

factor for the lowest quantum mechanical state. (In general, we note that 

for a system of s oscillators of frequency w at their zeropoint energy 

s 2- hw, Eq. (A. 7) gives 

For s=l,2,3, ... ,5, ... ,10 

w 
s 

cl) 
s-1 

s 

, for example, the multiplicative factor on 

the lUiS is LO, LO, 0.89,.,,0.61,.,, 0.19, respectively. This indicates 

that for larger values of s one should probably modify the classical den-

sity of states in such a way that w ~ w at the zeropoint energy.) 
s 
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Figure 6 




